Session 1B: Development and Use of Objective Forecast Tools

Goal: Learn how to create and use objective forecast tools

- Part 1: Creating and using databases (9:00 to 10:20)
 - Clinton MacDonald and Dianne Miller
- Part 2: Creating tools (10:40 to 12:00)
 - Joe Cassmassi

Introduction - Tools

Objective

•

•

- Persistence
- Criteria, thresholds, rules of thumb
- Regression equations*
- Classification and Regression Trees (CART)*
- Neural networks
- Numerical modeling
- Subjective
 - Climatology
 - Conceptual and experience

^{*}Focus of this course

Introduction – Regression

PM_{2.5} Regression Equation

 $PM_{2.5} (\mu g/m^3) = 53.429 - 0.31*Tmax$

- 0.541*SurfaceWS + 1.008*(T@700mb - Tmin)

+ 0.838*(Stability) + 0.183*Td@700mb00Z - 0.292*WS@850mb00Z

Variable	Description
Holiday	1 for Valentine's Day, Martin Luther King, Jr. Day, Presidents' Day, Veterans' Day, and Super Bowl Sunday. 2 for Thanksgiving weekend and Christmas Eve through New Year's Day. 1 for weekends immediately preceding or following any of the above holidays. 0 for all other days.
Precip	Forecasted precipitation in inches during the 24-hr forecast period.
Tmax	Forecasted daytime maximum temperature (°F)
SurfaceWS	Average resultant wind speed from 12Z to 00Z (0500 to 1700 MST)
T@700mb	Temperature at 700 mb at 12Z (0500 MST) (°C)
Tmin	Forecasted or observed minimum temperature (°C)
Stability	Temperature at 700 mb at 00Z (1700 MST) (°C) minus the forecasted daytime maximum temperature (°C) at the surface
Td@700mb00Z	Dew-point temperature at 700 mb at 00Z (1700 MST) (°C)
WS@850mb00Z	Wind speed at 850 mb at 00Z (1700 MST) (m/s)

$$Y=m_1x_1+m_2x_2+b$$

Introduction – CART

CART classification PM_{2.5} in San Diego

•

How these tools are developed (1 of 2)

- Tools are developed by investigating the historical relationship between predictor variables (meteorology) and forecast variables (air quality).
- We assume that when meteorological conditions occur in the future, air quality will respond in the same way it has in the past.

How these tools are developed (2 of 2)

General Steps:

- Process meteorological and air quality data into a common format (Part 2)
- Quality-control data (Parts 1 and 2)
- Create one data table ready for statistical packages (Part 1)
- Quality-control data (Parts 1 and 2)
- Run statistical software on merged data to create tools (Part 2)
- Test, evaluate, and re-develop tools as needed (Part 2)